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Mecanum wheels are used when omnidirectional movability of a vehicle is desired. That
means that the vehicle can move along a prescribed path and at the same time rotate
arbitrarily around its center. A Mecanum wheel consists of a set of rolls arranged around
the wheel axis. In this paper we describe in detail the geometry of these rolls. We derive
simple canonical parameterizations of the roll generating curve and the roll surface itself.
These parametric representations reveal the geometry of the roll. With their help we can
easily find an approximation of the roll surface by a torus for manufacture purposes. Based
on the roll parametrization we study the kinematics of a vehicle featured with Mecanum
wheels.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The Mecanum wheel (Fig. 1, left) was invented by the Swedish engineer Bengt Ilon in 1973.1 It consists of a set of k
congruent rolls placed symmetrically around the wheel body. The face of each roll is part of a surface of revolution R
whose axis b is skew to the wheel axis a. Usually an angle δ between a and b of ±45◦ is chosen. Fig. 1, right, shows (the
setup of) a mobile robot furnished with three wheels of that kind. Each of them is driven by a separate motor which gives
the vehicle the three degrees of freedom necessary for an omnidirectional movement on level ground. The advantage of this
architecture is that none of the wheels needs to be steerable. The wheel rolls rotate passively around their axes.

The parametrization in Dickerson and Lapin (1991) of the roll generating curve is rather involved and does not reveal the
geometry of the roll. With the help of Descriptive Geometry we derive a pretty natural parametrization of this curve which
also yields simple parametric representations of the roll surface and its meridian (Section 2). In Section 3 we use these
parametrizations to replace the roll by an approximating torus surface. Moreover, we derive the exact velocity equation for
a kinematic system with a Mecanum wheel (Section 4, Eq. (15)). With “exact” we mean that the position of the contact
point C of the roll and the terrain is also taken into account. In the literature on the kinematics of Mecanum wheels it
is (as a simplification) always assumed that C at any moment lies exactly beneath the wheel center (cf. for example with
Viboonchaicheep et al. (2003) or Siegwart and Nourbakhsh (2004, page 59)). Using this simplification we finally study the
case of a vehicle supplied with three Mecanum wheels (Section 4.1) and give a nice geometric characterization for the
solvability of the forward kinematics of a such a robot.

2. Roll geometry of the Mecanum wheel

The roll axes of a Mecanum wheel establish a set of k equidistant generators belonging to a regulus on a one-sheet
hyperboloid H of revolution with axis a. If the wheel moves on a plane terrain π its axis a remaining parallel to π then at
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Fig. 1. Left: Mecanum wheel. Right: Vehicle with 3 Mecanum wheels.

Fig. 2. Curve cR generating the rolls.

each moment at least one roll touches the ground. Hereby a passive (non-driven) rotation around the roll axis b is induced
to the respective roll by the motion. Of course, it is desired to avoid vibration or jiggling of the vehicle throughout the
motion, which means that the wheel axis a must keep a constant distance to the plane π :

dist(π,a) = r = const. (1)

Hence, the question is how to construct the roll surface R so that condition (1) is fulfilled. Fig. 2, left, shows the
situation in ground view (first projection) and corresponding front view (second projection)2 both, the wheel axis a and the
roll axis b, being parallel to the first projection plane. The rays for the second projection are parallel to a, i.e., the second
image a′′ of a is a point.

Geometrically condition (1) means that the curve cR that generates the roll surface R has to be a part of the cylinder
Z of revolution with axis a and radius r. This curve is the locus of contact points of R with the plane π . The roll R and
the cylinder Z are tangent to each other along cR .

2 We mark the first (second) image of an object by one (two) prime(s).
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If C ′′ ∈ c′′
R is the second image of a point C ∈ cR we can easily construct its first image C ′:

• Let n denote the surface normal of R running through C . Since the circle c′′
R is the second silhouette of R n′′ is the

diameter of c′′
R containing C ′′ .

• Because n is a surface normal in a contour point w.r.t. the second projection it lies parallel to the plane of this projection
and hence its first projection n′ is a horizontal line.

• As R is a surface of revolution n has to intersect b in a point N . In this way, the first image n′ of n and with it the first
image C ′ of C is fixed.

The above construction also yields a simple parametrization of cR . Let p denote the common perpendicular of a and
b and let A be the intersection point of p and a, i.e., the wheel center. We denote the distance and angle of a and b by
d and δ and introduce a coordinate system S := {A;ex,ey,ez} whose first and third unit vector ex and ez is on a and p,
respectively. As parameter we use the angle u between p and n. With the help of Fig. 2 we derive

x(u) =
⎛
⎝ x(u)

y(u)

z(u)

⎞
⎠ =

⎛
⎝d cot δ tan u

r sin u

−r cos u

⎞
⎠ (2)

as parametrization of cR . Since the two axes a and b are skew cot δ �= ∞ is guaranteed.
Eq. (2) tells us that cR in general is a rational 4th order space curve. This follows for instance by re-parameterizing cR

via τ = tan u
2 .

Only in case of b ⊥ a (δ = ±π
2 ) cR is an ordinary circle with radius r. Wheels of that type are often called “Swedish

wheels” in the literature.
Fig. 2, right, gives an impression of the curve cR which consists of two branches. It has the axis a of the cylinder Z and

the common perpendicular p of a and b as symmetry axes. Thus, the common perpendicular q of a and p is also a symmetry
axis of cR . The curve intersects p in the points P (0,0,−r), P (0,0, r) and if δ �= ±π

2 it has the generators g1,2 . . . z = 0,

y = ±r of Z as asymptotes. The axis b and cR meet in the common points K1,2(±
√

r2 − d2 cot δ,±√
r2 − d2,−d) of b

and Z .
Since the curve cR consists of two parts in case of δ �= ±π

2 , the same is true for the roll surface R. Fig. 3 shows the part
of R generated by the branch of cR running through P . The roll R is a surface of revolution with axis b and a symmetry
plane σ through p and orthogonal to b. The common point B of b and p is the symmetry center of R. The circle eP ⊂ σ
through P and centered in B is an equator on R, that means it has locally maximal radius, namely r − d. The two points
K1,2 are conical knots on R.

Remark. The surface normals n used in the construction above intersect the lines a, b and the line at infinity of the yz-
plane. Hence, if δ �= ±π

2 they establish a generator set on a hyperbolic paraboloid P . As one can easily check P has the
equation

xz + d cot δy = 0.

The y-axis of the coordinate system is the axis of P and A is its vertex. The second generator set on P consists of lines
parallel to the xy-plane. Thus, P intersects the plane at infinity in the two lines at infinity of the xy- and yz-plane. The
curve cR is the intersection curve of P and the cylinder Z . From this fact, we can see again (in a purely geometric way)
that cR is a rational fourth order curve with the asymptotes described above. The singular point of cR is the point X∞
at infinity of the x-axis since this point is the vertex of the cylinder R and at the same time lies on the paraboloid P .
The tangent plane τ of P in X∞ is the xy-plane and intersects the cylinder in the two tangents g1,2 of cR in its singular
point X∞ .

As a surface of revolution generated by a rational curve cR R itself is also rational. If δ �= ±π
2 the algebraic order of

R is 8, i.e., twice the order of its generating curve cR . In the special case of δ = ±π
2 the roll surface R is a torus whose

meridian circle cR intersects its axis b in K1,2.
Of course, for the physical roll of the Mecanum wheel only a certain part of R lying between the knots K1,2 is taken.
To obtain a suitable representation of the roll surface R we use a new coordinate system S∗ := {B;e∗

x ,e∗
y,e∗

z } with
origin in B , x-axis x∗ = b and the new z-axis coincident with the old one (Fig. 3). W.r.t. this system the curve cR has the
parametrization

x∗(u) =
⎛
⎜⎝

d cos2 δ
sin δ

tan u + r sin δ sin u

cos δ tan u(r cos u − d)

⎞
⎟⎠ . (3)
d − r cos u
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Fig. 3. The roll surface R.

By rotation around the x∗-axis with angle v we find

y∗(u, v) =
⎛
⎝ x∗(u, v)

y∗(u, v)

z∗(u, v)

⎞
⎠ =

⎛
⎜⎝

d cos2 δ
sin δ

tan u + r sin δ sin u

(r cos u − d)(cos δ tan u cos v + sin v)

(r cos u − d)(cos δ tan u sin v − cos v)

⎞
⎟⎠ (4)

as parametrization of R.
Putting y∗ = 0 we obtain tan v = − cos δ tan u which after substitution into the third line of (4) yields together with the

first line a parametrization of the meridian curve mR of the roll that lies in the x∗z∗-plane (parameter u):

mR . . .

{
x∗(u) = d cos2 δ

sin δ
tan u + r sin δ sin u

z∗(u) = −
√

cos2 δ tan2 u + 1(r cos u − d)

}
. (5)

More accurately: (5) is the parametrization of one of the two branches of the meridian curve; the other branch is
symmetric to the first one w.r.t. the axis b = x∗ of revolution and one gets its parametrization by changing the sign in front
of the square root.

3. Approximation of the roll by a torus

As we have seen in the previous section the roll surface R of a Mecanum wheel is algebraic of order 8 generated by a
fourth order space curve cR . The natural parametrizations (Eq. 4) of the roll surface and its meridian curve (Eq. 5) can be
used for manufacturing the roll precisely. But since the rolls usually have a flexible rubber coat it is sufficient to use a less
complicated surface which approximates R sufficiently accurate. For instance, one could approximate the meridian curve
by a suitable conic section or a rational freeform curve. As an example, we will construct an approximating torus surface T
for the roll R.

Problem 1. Construct a torus T with axis b so that T and the roll surface R have contact of order 2 along the equator
circle eP .

Due to the symmetry with respect to the plane σ of eP the center of the wanted torus T must be the point B . Fig. 4,
left, shows the situation in the x∗z∗-plane: One of the two meridian circles of R in this plane has to osculate the roll
meridian mR (Eq. (5)) at P . Let us denote this meridian circle by mT . Vice versa, if mR and mT have contact of order k in
P than the same is true for the generated surfaces R and T along eP .

The equation of mT can be set up as

F (x∗, z∗) := x∗2 + (z∗ − rl)
2 − r2

m = 0. (6)

Here rl and rm denote the yet unknown radii of the center circle l and of the torus meridian circle mT .



788 A. Gfrerrer / Computer Aided Geometric Design 25 (2008) 784–791
Fig. 4. Two ways to construct an approximating torus.

By substitution of (5) into (6) we obtain the function

f (u) := sin2 u

(
d

cos2 δ

sin δ cos u
+ r sin δ

)2

+
(√

cos2 δ tan2 u + 1(r cos u − d) + rl

)2 − r2
m (7)

in u. Since both of the curves mR and mT are symmetric w.r.t. z∗ f is an even function. Hence, all derivatives of odd order
vanish at u = 0:

∂ f

∂u

∣∣∣∣
u=0

= ∂3 f

(∂u)3

∣∣∣∣
u=0

= · · · = 0.

This is true for arbitrary values of rl , rm .
Now we determine rl and rm so that the two additional conditions

f (0) = (rl − d + r)2 − r2
m = 0,

∂2 f

(∂u)2

∣∣∣∣
u=0

= 2
(r sin2 δ + d cos2 δ)(d − rl sin2 δ)

sin2 δ
= 0

are fulfilled. The solution is

rl = d

sin2 δ
, (8)

rm = r + d cot2 δ. (9)

For these values of rl and rm all derivatives of f up to order 3 are zero at u = 0. Therefore, the roll meridian curve mR and
the meridian circle mT of the torus have contact of order 3 in the point P . The same is true for the generated surfaces of
revolution along their common equator eP :

Theorem 1. The roll surface R and the coaxial torus T with center circle l ⊂ σ (center B, radius rl = d
sin2 δ

) and meridian circle radius

rm = r + d cot2 δ have contact of order 3 along their common equator circle eP .

Exactly in case of Swedish wheels (δ = ±π
2 ) the torus surface T and the roll surface R are identical.

If especially δ = ±π
4 (the case that mainly occurs in praxis) the radii of the torus are

rl = 2d, rm = r + d.

Theorem 1 says that close to their common equator eP the torus T approximates the roll surface R well. Fig. 4, left,
shows both roll meridian mR and torus meridian circle mT . On the other hand this figure also reveals that at some
distance from P the approximation is not satisfying. So, if a Mecanum wheel is supplied with rolls of bigger length it may
be advantageous to use a torus T̃ for the approximation whose meridian circle mT̃ is tangent to mR at P and additionally
contains another point Q of mR (Fig. 4, right). The point Q can be computed with the help of (5). The approximation order
of T̃ along eP is only C1 but at the outside regions one obtains a better approximation.

4. Kinematics of the Mecanum wheel

We consider a vehicle moving on level ground and furnished with Mecanum wheels like the one in (Fig. 1, right). Let us
analyze the situation for one of the wheels at a certain moment t (Fig. 5). Four systems are involved: the terrain Σ0, the
vehicle Σ1, the wheel Σ2 and the roll Σ3 which at that moment touches the ground at a certain point C (contact point).
Note that this point always lies beneath the axis a of the wheel Σ2: It is the intersection point of the orthogonal projections
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Fig. 5. Velocities for a vehicle with Mecanum wheels.

of the wheel axis a and the roll axis b in Σ0. Only in case of b being in a horizontal position C lies beneath the wheel
center A!

For the analytical description we choose an arbitrary point O 1 (“vehicle center”) in Σ1 as origin of a coordinate system
S1 := {O 1;e1x,e1y,e1z} connected with the vehicle Σ1, the x- and y-axis being parallel to the ground. The wheel center A
may have x- and y-coordinates ax and ay w.r.t. S1 and α may denote the angle between e1x and the wheel axis a. Then

a =
⎛
⎝ cosα

sinα

0

⎞
⎠

is the direction vector of a. The direction vector b of the roll axis depends on the rotation angle u of the wheel as follows:

b =
⎛
⎝ cosα cos δ − sinα sin δ cos u

sinα cos δ + cosα sin δ cos u

sin δ sin u

⎞
⎠ =:

⎛
⎝ bx

by

bz

⎞
⎠ . (10)

W.r.t. S1 the contact point C has the x- and y-coordinates

cx = ax − d cosα cot δ tan u

c y = ay − d sinα cot δ tan u

}
. (11)

In the following considerations we can neglect the z-coordinates since the occurring velocity vectors are all parallel to
the xy-plane.

Let ω be the angular velocity of the motion Σ1/Σ0 (vehicle/ground) and vO 1,01 = (vx, v y)
� be the velocity vector of O 1

for that motion at the instant t . Then the vectorial velocity of the contact point C(cx, c y) w.r.t. the motion Σ1/Σ0 is3

vC,01 =
(

vx − ωc y

v y + ωcx

)
. (12)

The motion Σ2/Σ1 (wheel/vehicle) is a simple rotation around the axis a, hence, the velocity vector of C for this motion is

vC,12 = u̇r

(− sinα

cosα

)
(13)

where u̇ = du
dt is the angular velocity of Σ2/Σ1.

The motion Σ3/Σ2 (roll/wheel) is a rotation around b. Thus, the instantaneous vectorial velocity vC,23 of C is perpen-
dicular to b (Eq. (10)):

vC,23 = λ

(−by

bx

)
. (14)

3 One can construct the vector vC,01 from the input vO 1,01, ω as indicated in Fig. 5. Here I denotes the instantaneous pole and tan θ = ω. Compare also
with Wunderlich (1970, page 22) or Bottema and Roth (1990, page 258).
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The velocity vector vC,03 of C for the motion Σ3/Σ0 (roll/ground) has to be zero since the (passive) roll moves on the
ground without sliding. Using the additivity rule for velocities of composed motions we obtain the condition

vC,01 + vC,12 + vC,23 = vC,03 = o = (0,0)�

which by substitution of (12), (13), (14) yields

r sinαu̇ + byλ = vx − ωc y

r cosαu̇ + bxλ = −v y − ωcx

}
.

By elimination of λ we get the differential equation

r(bx sinα − by cosα)u̇ − bx(vx − ωc y) − by(v y + ωcx) = 0 (15)

ruling the connection between the vehicle motion and the wheel rotation. The terms bx,by, cx, c y in this equation are
functions in u according to Eqs. (10), (11) and u itself, of course, depends on time t .

If we study the motion globally, the situation is rather complicated. While one roll of the wheel is in contact with the
ground the contact point C moves from the first side of the wheel to the second. When the turn is on the next roll C jumps
back to the first side again. It follows that bx(u),by(u), cx(u), c y(u) are functions with jump discontinuities corresponding
to the changes of the rolls.4

This is the reason that for practical purposes5 it is assumed that the contact point C in the average lies beneath the
wheel center A. By this simplification we can put bx = cos(α + δ), by = sin(α + δ), cx = ax , c y = ay in Eq. (15). Then we
obtain

u̇ = − 1

r sin δ

[
sin(α + δ)(v y + ωax) + cos(α + δ)(vx − ωay)

]
. (16)

This formula allows to compute the (approximate) wheel velocity u̇ for given vehicle velocity data vx, v y,ω.

4.1. Example: Kinematics of a vehicle with three Mecanum wheels

As an example we study the case of a vehicle supplied with three Mecanum wheels with wheel centers Ai(aix,aiy) and
wheel axis angles αi , i = 1,2,3. If we denote the corresponding angular velocities of the wheels by ωi then according to
Eq. (16) we have

⎛
⎝ω1

ω2

ω3

⎞
⎠ = − 1

r sin δ
M

⎛
⎝ vx

v y

ω

⎞
⎠ (17)

with

M =
⎛
⎝ cos(α1 + δ) sin(α1 + δ) a1x sin(α1 + δ) − a1y cos(α1 + δ)

cos(α2 + δ) sin(α2 + δ) a2x sin(α2 + δ) − a2y cos(α2 + δ)

cos(α3 + δ) sin(α3 + δ) a3x sin(α3 + δ) − a3y cos(α3 + δ)

⎞
⎠ .

Eq. (17) is the solution to the inverse kinematic problem of the vehicle:

Inverse Kinematic Problem:
Given: Angular velocity ω of the vehicle Σ1 and vectorial velocity (vx, v y)

� of the vehicle center O 1;
Wanted: Angular velocities ωi of the wheels i = 1,2,3.

Conversely, we have the

Forward Kinematic Problem:
Given: Angular velocities ωi of the wheels i = 1,2,3;
Wanted: Angular velocity ω of the vehicle Σ1 and vectorial velocity (vx, v y)

� of the vehicle center O 1.

4 Moreover, to avoid vibration the rolls are arranged around the wheel body in a way that the silhouettes of adjacent rolls are slightly overlapping. This
means that at the change of two rolls both of them are in contact with the ground for a short time interval, one close to the first side of the wheel and
the other close to the second.

5 See Viboonchaicheep et al. (2003) or Siegwart and Nourbakhsh (2004, page 59).
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Clearly, a unique solution for the forward kinematic problem exists if and only if det M �= 0, namely⎛
⎝ vx

v y

ω

⎞
⎠ = −r sin δ M−1

⎛
⎝ω1

ω2

ω3

⎞
⎠ . (18)

Our simplification from above means that the axis bi of the roll that is in contact with the ground is assumed to be
horizontal, roll center Bi and contact point Ci lying exactly beneath the wheel center Ai(aix,aiy). In this position (the first
projection of) bi has the equation

− sin(αi + δ)(x − aix) + cos(αi + δ)(y − aiy) = 0.

In other words, the line coordinates of bi are(− sin(αi + δ), cos(αi + δ),aix sin(αi + δ) − aiy cos(αi + δ)
)
.

If one multiplies the second column of M with −1 and additionally exchanges this column with the first one then the i-th
row of the modified matrix is identical with that vector. Hence, det M = 0 is equivalent to the condition that the three roll
axes meet in a common point I which can also be at infinity. As a result we have

Theorem 2. The direct kinematics of a robot with three Mecanum wheels has a unique solution if and only if the wheels are arranged
so that the roll axes are not concurrent or parallel.

In a bad wheel arrangement with the roll axes running through a common point I the possible self motion of the vehicle
is the rotation around I . In this case the three contact rolls rotate around their axes even if the wheel motors stand still.
Such an unwanted self motion might be induced by slightly inclined terrain. Of course, this effect also shows up in case of
vehicles with more than three Mecanum wheels.

5. Conclusions

In the paper I give some detailed geometric analysis of Mecanum wheels and work out natural parametrizations of
the roll surface (Eq. (4)) and its meridian curve (Eq. (5)). The result can be used for manufacturing the rolls precisely.
Alternatively I investigate suitable approximations of the roll surface by torus patches (Section 3).

Moreover I show that the instantaneous contact point C of a roll moves from one side of the Mecanum wheel to the
opposite as the wheel rotates. This is neglected in the standard literature which might be a reason for deviations between
the real and the predicted motion of a vehicle on such wheels. I develop the differential equation ruling the connection
between the vehicle velocity and the angular velocity of the wheel (Eq. (15)). This could be the starting point for some
more accurate analysis of the kinematics of Mecanum wheel vehicles in future research work. As a drawback the formula
requires the knowledge of the rotation angle function u = u(t) of the wheel which may not be available in practice.

Finally, by returning to the simplified equation between the vehicle and wheel velocities, I deliver some nice geometric
characterization of singular wheel constellations (Theorem 2).
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