2021 4th International Conference on Circuits, Systems and Simulation (ICCSS) | 978-1-7281-6752-7/20/$31.00 ©2021 IEEE | DOI: 10.1109/ICCSS51193.2021.9464217

2021 4th International Conference on Circuits, Systems and Simulation

The Working Principles of ESP32 and Analytical Comparison of using Low-Cost
Microcontroller Modules in Embedded Systems Design

Husam Kareem

Department of Automation and Applied Informatics
Budapest University of Technology and Economics
Budapest, Hungary
e-mail: hus_almagsoosi@edu.bme.hu

Abstract—With the emergence of many low-cost development
platforms, designing an embedded system has become more
flexible using different microcontroller platforms. However, it
is necessary to consider various factors before selecting the
brain of embedded systems, the microcontroller. This paper
compares two commonly used development boards in
designing embedded systems with one of the latest boards
manufactured for high-performance, low-cost embedded
systems design called ESP32. The comparison is based on
hardware specifications, as well as programming tools. A Wi-
Fi analyzer system was designed and implemented as an
example of using the ESP32 module in low-cost, low-energy
embedded systems design. In addition to the ESP32, a
Graphical LCD is used in the design as an output device.
However, there is a lack of literature on establishing serial
communication between the ESP32 module and the Graphical
LCD. Therefore, this work presents a clear explanation of
connecting the Graphical LCD to the ESP32 module using only
three GPIO pins.

Keywords-ESP32, Arduino, embedded systems, Wi-Fi,
Graphical LCD, low-cost microcontrollers

1. INTRODUCTION

The recently growing demand for the control and
automation of a wide variety of devices and gadgets has led
to a rapid expansion in embedded systems markets.
Accordingly, various microcontroller modules have been
emerged along with many competitive advantages like
portability, affordable cost, USB-based, readily available
open-source programming tools.

Designing an embedded system can be described as the
technique of choosing and constructing the compatible
combination of software and hardware components to obtain
system design goals such as efficiency, speed, reliability, and
affordability. Each embedded system involves at least one
microcontroller unit acting as a brain of the entire system,
but in a way that it is hidden from the user [1]. There are
various microcontroller units available on the market and
vastly used in the design and development of embedded
systems. However, Arduino is one of the most widely used
low-cost open-source boards for designing and prototyping
embedded systems.

The main motivation of this work is to focus on the
working principles of the new powerful board from Espressif
systems, ESP32 module [2]. It discusses an application
example that represents a practical implementation of using

978-1-7281-6752-7/21/$31.00 ©2021 IEEE

Dmitriy Dunaev

Department of Automation and Applied Informatics
Budapest University of Technology and Economics
Budapest, Hungary
e-mail: dunaev@aut.bme.hu

ESP32 board in embedded systems design. Besides, it
presents a detailed comparison between the ESP32 vs. the
selected popular open-source Arduino development boards:
Arduino UNO and Mega2560 in terms of hardware
specifications and programming tools.

II. RELATED WORK

Recently, several embedded systems and the Internet of
Things (IoT) devices have been implemented based on
contemporary low-cost microcontroller boards. Since this
study's major concern is to make an analytical comparison
for low-cost microcontroller modules that are commonly
used in embedded system design, this section highlights the
very related work that provides a comparative analysis using
the ESP32 board. The authors of [3] discussed a comparative
study of the ESP32 module in IoT devices' design. The study
provides a detailed comparison between ESP32 against three
different competitive boards that are used to design IoT
devices: ESP8266, CC32, and Xbee modules. The
comparison shows that ESP32 outperforms competitive
boards in the design of IoT devices and applications in terms
of functionalities and cost [3]. This is mainly due to the dual-
core structure of ESP32, which makes it a perfect option for
IoT applications and embedded systems design.

III. TECHNICAL SPECIFICATIONS AND FUNCTIONS OF
ARDUINO AND ESP32 BOARDS (HARDWARE)

Several microcontroller boards for designing embedded
systems have been presented from different manufacturers in
the recent few years. On the one hand, some of these boards
are intended for very advanced projects, and they are
relatively costly, like zedboard [4]. On the other hand,
several open-source microcontroller boards have been
released at a relatively low price, like Arduino boards [5] and
ESP32 [2]. Thus, the boards selected for the analytical
comparison are Arduino UNO and Mega2560 since they are
one of the most used modules in designing low—cost
embedded systems. Besides, the ESP32, due to its
competitive specifications that combine such advantages as a
low-cost and high-speed core processor board, is discussed.

A. Arduino UNO

1) System and Memory: The UNO is a microcontroller
board based on Atmega328P [6]. The ATmega 328P is a
low-power 8-bit Reduced Instruction Set Computer (RISC)

130
Authorized licensed use limited to: Technische Hochschule Mittelhessen. Downloaded on September 07,2024 at 10:12:53 UTC from IEEE Xplore. Restrictions apply.

with one Atmel AVR core with 16-Mhz CPU Speed.
Moreover, the embedded memories are a combination of
three types of memories represented by 1-Kb EEPROM, 2-
Kb SRAM, and 32-Kb flash memory.

2) Inputs and Outputs: The UNO board includes 16-1/0
pins (6 of which can be used for PWM output). Also, it
contains 6-analog input pins AO-to-AS5 [7]. It is worth
mentioning that the UNO board does not have an analog
output pin. Therefore, when an analog output is required
from the Arduino UNO based project, the PWM pins are
used to compensate for this shortage. A top view of the
essential components available on the Arduino Uno board is
shown in Fig. 1.

3) Communication Principles: There are three different
serial communication protocols: UART, SPI, and 12C. The
Universal Asynchronous Receiver/Transmitter UART
simple communication protocol needs two pins to establish
its interface. Arduino boards must depend on the UART
protocol to communicate with computers using the onboard
USB-to-Serial convertor. The UNO pins for UART
communications are pin 0 (RX) and pin 1 (TX) for data
receiving and transmitting, respectively [6]. The SPI
requires 4-pins to establish serial communication over
Arduino UNO using the SPI library. These pins are as
follows: pin 10 for slave-select (SS), pin 11 master-
out/slave-in (MOSI), pin 12 for master-in/slave-out (MISO),
and pin 13 for serial clock (SCK) [1]. Moreover, the UNO
board provides a serial interface using the 12C protocol. It
requires using the Wire library and two pins: the data line
(SDA) on analog pin A4 and the clock line (SCL) on analog
pin AS.

Reset Button ~ Ground

Digital Pins
I

Pin 13 LED
—Power LED

RX/TX LEDs

+—Microcontroller

Power Jack Power Pins

USB Socket

Analog Pins

Figure 1. Arduino UNO with all essential components labeled.

B. Arduino MEGA2560

1) System and Memory: The MEGA2560 board is
manufactured using the Atmega2560 microcontroller [8].
Atmega2560 microcontroller is an ultra-low-power 8-bit

AVR enhanced-RISC architecture with 16-MHz CPU Speed.
Its enhanced RISC- architecture allows executing powerful
instructions within a single clock cycle. Consequently, the
MEGA2560 provides throughputs approaching 1 MIPS per
MHz, leading the embedded systems designer to enhance
power consumption versus processing speed. Three types of
memory constitute the embedded memory system of the
MEGAZ2560 microcontroller: 4-Kb EEPROM, 8-Kb SRAM,
and 256-Kb flash memory [8].

2) Inputs and Outputs: There are 54 digital I/O pins on
the Arduino MEGA2560, 15 of which can generate PWM
output. Furthermore, it has 16-analog input pins A0-A15 [8].
This board does not include an analog output pin. Like most
Arduino boards, which do not contain any analog output, it
uses PWM functions whenever an analog output is required.

3) Communication Principles: The communication
protocols available on the UNO board are also used on the
MEGA2560 board. However, they are different in two
aspects: the pin location for each protocol and the number of
pins used for the UART protocol.

Regarding the UART serial communication protocol,
Arduino Mega2560 can communicate with four devices
simultaneously using serial: Serial: 0 (RX) and 1 (TX);
Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16
(TX); Serial 3: 15 (RX) and 14 (TX). As mentioned above,
the SPI requires 4-pins to establish serial communication
over Arduino boards. These pins, on the Mega2560 board,
are as follows: pin 53 for (SS), pin 52 for (SCK), pin 51 for
(MOSI), and pin 50 for (MISO) [7]. The 12C protocol also
requires the Wire library and two pins: the data line (SDA)
on pin 20 and the clock line (SCL) on pin 21. Fig. 2 shows a
front view of the Arduino Mega2560.
Digital Pins

RX/TX . Power
LEDs Pin13 I - L
\ LED PWM Pins Communication Pins /
I 1l]
‘ Xﬁﬁﬁmﬁ'ﬂ IO CEEEEEEE 6) |
B Digital
an
aD !i! Pins
Arduino MEGA

EEEEECEEH EEEEEEEE]
Reset
Button

Power

Jack Power Pins Analog Input Pins

USB

Socket Microconroller

Figure 2. Arduino Mega2560 with all essential components labeled.

C. ESP32

1) System and Memory: A dual-core, 32-bit, Harvard
architecture, Tensilica LX6 microcontroller with adjustable
CPU speed from 160 to 240 MHz is combined in the ESP32
prototyping board [3]. Names of the two CPUs are
"PRO_CPU" for protocols and "APP_CPU" for applications.

131
Authorized licensed use limited to: Technische Hochschule Mittelhessen. Downloaded on September 07,2024 at 10:12:53 UTC from IEEE Xplore. Restrictions apply.

However, those CPUs are interchangeable for most
purposes [2]. Therefore, the ESP32 board can be suitable for
complex systems requiring very high processing and power
efficiency. The low-power ESP32 board involves extra
features like power scaling and power modes [9].

Furthermore, this board includes on-chip memory
(internal memory) and onboard memory (external memory).
SRAM and ROM provide the internal memory; both are used
for specific functions: 448 KB of ROM is used for booting
and core functions, and 520 KB of SRAM is used for data
and instructions. The ESP32 board supports up to 16-MB of
ISP flash RAM [3].

2) Inputs and Outputs: The ESP32 development board
contains 36 GPIO pins [9], 18 of which are representing the
ADC, while 2 of the pins are dedicated to DAC
functionality. Therefore, this board has real analog output
pins, while this feature is not available in most competitive
boards (e.g., in the majority of Arduino boards). Besides, all
pins that can operate as output can generate PWM output
except (GPIOs 34 to 39). Furthermore, some other pins are
dedicated to extra functionalities, which will be explained
later.

e

I / O Connectors
|
si0p3uuo0) 0/ |

USB-to-UART
Bridge

& .OO..........@.

V0000000000000

e

ol

En/Rst Button AR
e
Micro USB Port

3 Boot Button
i

Figure 3. Essential components of the ESP32 board

3) Communication Principles: The ESP32 development
board can communicate with the outside world using two
main approaches: wired and wireless communication.

Wireless communication is accomplished based on two
principles: Wi-Fi and Bluetooth. The ESP32 includes full
802.11 b/g/n/e/i WLAN MAC. It also provides a P2P group
operation complaint using the ultimate P2P protocol [3].
Therefore, the ESP32 can function as a station and get
connected to the Internet or server and access point to

provide an interface that allows the user to control an
embedded system by a mobile application. Regarding
Bluetooth, the microcontroller board provides v4.2 BR/EDR
and Bluetooth Low-Energy (BLE) with operation speed up
to 4.0 Mbps.

The ESP32 supports the same wired communication
protocols as Arduino boards (ISP, UART, and I12C).
However, the ESP32 board offers additional options such as
the control area network bus (CAN) and I2S serial bus
interface [10]. Another feature that gives extra advantages
for the ESP32 board is that it already includes different
sensors: temperature sensor, touch sensor, and hall sensor.
Table 1 provides a detailed comparison between the ESP32,
Arduino MEGA2560, and Arduino UNO boards. Fig. 3
shows the pinout configuration of the ESP32 board.

IV. PROGRAMMING TOOLS (SOFTWARE)

There must be an integration between hardware
components and a developing software tool and
programming language to design any embedded system.
Hence, for hardware programming, a development tool
(software) is required compatible with the selected
microcontroller [11]. Therefore, for each microcontroller
available for embedded systems design, there should be at
least one open-source programming tool freely available for
design engineers.

A. Arduino Programming

Programming the Arduino boards is accomplished using
a free, open-source, and easy-to-use integrated development
environment (IDE). The Arduino IDE is a cross-platform
software designed to run under different operating systems
like Mac OS, Linux, and Windows [12]. A user can write,
compile, and upload the programs (called sketches) to any
Arduino board. The Arduino sketches can be written using
the C++ programming language. Users with good knowledge
of C/C++ programming might have an extra advantage in
coding Arduino sketches.

B. ESP32 Programming

The official development framework for programming
the ESP32 is called ESP-IDF: Espressif Systems Internet of
Things development framework, available on a Git-Hub
repository. The ESP-IDF was designed with Linux
compatibility in mind. Although it can be run on Windows, it
requires special software such as MSYS2 [3]. Furthermore,
ESP-IDF-Template is necessary to start a project since it
provides all essential files for a compilation process. The
standard language for programming the ESP32 is C since
most of its API libraries are offered in the C programming
language. The ESP32 can also be programmed using the
Arduino programming IDE. Since this microcontroller
follows an open-source paradigm, many other options are
also available for programming the ESP32, such as
JavaScript and LUA.

132
Authorized licensed use limited to: Technische Hochschule Mittelhessen. Downloaded on September 07,2024 at 10:12:53 UTC from IEEE Xplore. Restrictions apply.

TABLE 1. DEVELOPMENT BOARDS COMMONLY USED IN LOW-COST EMBEDDED SYSTEMS DESIGN

Microcontroller board \ ESP32 [Arduino MEGA2560 \ Arduino UNO
Details
Processor type Tensiliga Xtensa LX6 A"_Fm_ega2560 A"‘Fmgga328P

(32-bit Dual-Core) (8-bit single core) (8-bit single core)

Processor speed 160/240 MHz 16 MHz 16 MHz
SRAM (KB) 520 8 2
ISP Flash RAM 2 MB (up to 16 MB) 256 KB 32 KB
Nonvolatile memory 448 KB of ROM 4 KB of EEPROM 1 KB of EEPROM
Operating voltage 2.3V.t0 3.6V. 5V. (7V. - 12V. recommended) 5V. (7V. - 12V. recommended)
Operating current 80 mA average 500mA. Maximum 500mA. Maximum

Programming language (s) C++, JavaScript, LUA

ESP-IDF Linux based, Arduino IDE using

Arduino IDE using C++ Arduino IDE using C++

Open-source Yes

Yes Yes

Size (m.m) Length 25.5 x width 18.0

Length 101.52 x width 53.3 Length 68.6 x width 53.4

Wireless communications

WiFi 802.11 b/g/n/e/i

Not available Not available

Bluetooth 4.2 BR/EDR + BLE

Not available Not available

Inputs and outputs

UART v v 4
SPI v v v
12C v v v
128 v Not available Not available
CAN v Not available Not available
GPIO 36 54 Digital + 16 Analog input 14 Digital + 6 Analog input
PWM All output pins except (GPIOs 34 to 39) 15 6
ADC 18 16 6
DAC 2 0 0
There is a lack of research examples of connecting the
V. PRACTICAL EXAMPLE OF EMBEDDED SYSTEM DESIGN

USING ESP32

Applications that can comprise the ESP32 board as a
hardware core are limited to embedded systems design and
include various IoT applications. Therefore, the presented
example can be attributed to both the embedded systems
design and IoT. This paper presents a portable Wi-Fi
analyzing system that detects the surrounding Wi-Fi
networks and shows various details about them, such as
SSID, signal strength, MAC address, and encryption type.

VL

The use of the Internet is indispensable for most people;
thus, it has become an essential aspect of humans' daily lives.
Nowadays, one can find dozens of Wi-Fi networks with
Internet access in various places such as university campuses,
restaurants, shopping malls, etc. However, cannot get
connected to any arbitrary network as it can be either
password protected or use encrypting techniques not
supported by all device. Therefore, a portable Wi-Fi
analyzer can help decide which Wi-Fi network is more
suitable for connection in terms of open/protected or signal
strength.

STATEMENT OF THE PROBLEM

ESP32 board to a Graphical Liquid Crystal Display (GLCD).
Therefore, the system design will implement and clearly
illustrate the connection between the ESP32 and the GLCD
using the minimal number of general-purpose input/output
(GPIO) pins. This paper also provides a comprehensive
explanation of the libraries and programming code used to
establish communication between the GLCD and ESP32.

VIL

The project's prototype design and implementation
include the hardware and the software. The hardware
constitutes the system's physical architecture, while the
software comprises the rules and protocols that control the
hardware [13].

A. Hardware

The hardware components used in the system design are
the ESP32 board and a Graphical LCD (GLCD 128%64) with
the ST7920 controller type. This design's novelty is that data
is sent to the GLCD using only three GPIO pins of the
ESP32 module using the serial data transfer technique. The
GLCD has an advantage in receiving data in parallel or serial
mode from the microcontroller. To select the desired mode,
pin 15 (PSB) on the GLCD must be connected to VCC or

SYSTEM DESIGN

133
Authorized licensed use limited to: Technische Hochschule Mittelhessen. Downloaded on September 07,2024 at 10:12:53 UTC from IEEE Xplore. Restrictions apply.

GND for setting parallel or serial data transfer mode,
respectively.

The serial data communication technique used in the
system is the SPI protocol. As mentioned before, the SPI
protocol requires four pins to establish its communication
(SCK, MISO, MOSI, and SS). However, the developed
system needs only three pins since the data communication
process in this design involves only data transmission from
the master (ESP32 module) to the slave (GLCD module).
Therefore, the pin used for data transmission from slave to
master in SPI protocol (MISO pin) is not required and does
not need to be connected. The three other SPI pins are
connected as follows: the master-out slave-in (MOSI) pin is
connected to GPIO23 on the ESP32 board and pin 5 (R/W)
on the GLCD. The system clock (SCK) pin is connected to
GPIO18 on the ESP32 board and pin 6 (E) on the GLCD.
The slave select (SS) pin is connected to GPIOS on the
ESP32 board and pin 4 (RS) on the GLCD. The rest of the
pins used on GLCD are connected either to the VCC pin or
GND pin, as illustrated in Fig. 4.

35 1vss
~t EN /RESET GPI023 2vob
~{ GPI036/SVP GPI022 fee | 3 VO
~—{ GPIO39/SVN GPIO1/TX0 | 4RS
~ GPIO34 GPIO3/RX0 == SR/W
~—{ GPIO35 GPIO21 foe 6E
—{ GPI032 GPIO19 [~ {7080 [
— GPIO33 GPIO18 —|soe1 %
— Gplo2s ESP32 00 —oDB2 R
— epioze UiFi G097 L ~—| 10083 @
—| epioz7 U1 Gpiogg | {11084 B
-t GPIO14 GPIO4 = s 12 DB5 R:
~{ GPIO12 GPIOD [~ ! 13 DB6 é
-~ GPIO13 GPIO2 [~ e 14 DB7
= GPI09/sD2 GPIO15 je 15 PSB
~— GPI010/sD3 GPIO8/SD1 = e 16 €S2
~— GPIO11/SDCMD GPIO7/SDO [~ =——{17RsT
GPIO6/SDCLK e 15 vout
a 19 A(+)
E 20K(-)

Figure 4. The schematic diagram for the system interconnection

B. Software

Programming the ESP32 can be divided into two main
tasks. The first is scanning the in-range Wi-Fi networks,
while the second is showing each network details
(parameters) on a GLCD. To implement both, it requires a
programming tool compatible with the ESP32 module. As it
was mentioned, programming the ESP32 board can be done
using several programming tools; Arduino IDE is selected
for this job. Based on the design tasks, two libraries are
required: (i) for Wi-Fi scanning < Wi-Fi .h>, which is
available in Arduino IDE, and (ii) for passing and visualizing
the results on the GLCD <U8g2lib>. The U8g2lib [14] is a
key solution for establishing serial communication between

various programming modules and different screens based
on 12C or SPI protocols. The major challenge faced during
the system design was that the U8g2lib does not support the
ESP32. However, this problem could be successfully solved
by adding the following additional piece of code:

U8G2 ST7920 128X64 1 SW_SPI u8g2 (U8G2 RO,
18, 23, 5).

Here ST7920 stands for the controller type of GLCD,
128%64 is the size of the GLCD screen, U8G2 RO means
that no rotation in the screen display is required, and finally
18, 23, 5 refers to GPIO pins of SPI protocol on the
controller board (SCK, MOSI, and SS pins). During the
research, various controller boards have successfully
connected to the GLCD, even those not supported by the
U8G2 library by default. This paper provides actual
parameters in the line of code above for a specific design.

VIIL

The Wi-Fi analyzer functionality is divided into two parts:
the scanning initiates the operation, and the displaying
finalizes the process and shows up the results.

SYSTEM OPERATION

A. Scanning Stage

The on-chip Wi-Fi module scans and detects network(s)
in range using [Wi-Fi.scanNetworks()] function. If no
network is detected, the system shows a message "No
networks found." If Wi-Fi networks are detected, the system
requests the detected networks' parameters, such as the SSID,
encryption type, RSSI level, and MAC address.

B. Displaying Stage

This stage follows the scanning. The system shows the
obtained parameters of the surrounding Wi-Fi networks, first
on the Graphical LCD and then on the serial monitor
available in Arduino IDE. Wi-Fi networks are listed in
descending order based on their signal strength. Therefore,
the network with the strongest signal (highest RSSI value) is
on the top. However, all detected networks are shown on the
serial monitor simultaneously. If a Wi-Fi network is not
password protected, then the Encryption type is shown as
"open”. Fig. 5 shows an example of the scanned Wi-Fi
networks on the GLCD, while Fig. 6 shows the same scan
result on the serial monitor.

Encryptiontype: Dpen

BS5T
MAC Addrerr

Figure 5. Displaying the Wi-Fi networks in sequence on the GLCD.

134
Authorized licensed use limited to: Technische Hochschule Mittelhessen. Downloaded on September 07,2024 at 10:12:53 UTC from IEEE Xplore. Restrictions apply.

& coms = | E |
scan done i

4 networks found

m

Network 55ID: icto
Encryption type: WEAZ PSK
RS5I: (-0} dBm

Signal Strength: Strongest
MAC Bddress : 0C:40:64:BE:20:40

Network S5SID: linkays-22
Encryption type: Open

RS5I: (-79)dBm

MAC Bddress : 00:81:29:40:24:C8

Network S5SID: Ku_af

Encryption type: WEAZ PSK

RS5I: (-83)dBm

MAC Bddress : 4C:BB:CRrAE42:DE

Network 55ID: AL-HRANE1S
Encryption type: WEA WBAZ PSK
RS5I: (-90) dBm

Signal Strength: Weakest

MAC Bddress : D9:32:13:68:D2:B1

v| |15200baud v | Clear output

[7] Autoscrall [7] Show timestamp :Newhne

L

Figure 6. Displaying the available Wi-Fi networks on the serial monitor

IX. CONCLUSION

The main objective was to provide an example of ESP32
as a low-cost, low-energy embedded systems design. This
paper provided a way of establishing serial communication
between the ESP32 module and the Graphical LCD, even if
the U8G2 library does not support the ESP32 by default.
This article's novelty includes connecting the ESP32 board to
Graphical LCD using a minimum number of GPIO pins.

In addition, a detailed comparison is provided to
highlight the advantages of the ESP32 in designing
embedded systems compared to similar boards such as
Arduino UNO and Arduino Mega2560. A use-case of
developing an embedded system on the ESP32 board with a
built-in Wi-Fi module has been presented. The proposed
device can scan the surrounding Wi-Fi networks and
visualize several network parameters on a graphical LCD
screen. The system's total cost is less than $25, including the
ESP32 module, GLCD, and double-sided PCB. For future
work, a wireless sensor network for agriculture monitoring
can be developed using ESP32 and utilize routing algorithms
for data collection in such networks.

ACKNOWLEDGMENT

Project no. FIEK 16-1-2016-0007 has been implemented
with the support provided by the National Research,
Development and Innovation Fund of Hungary, financed
under the Centre for Higher Education and Industrial

Cooperation - Research infrastructure development
(FIEK 16) funding scheme.
REFERENCES

[1] Russell, David J. "Introduction to embedded systems: using ANSI C
and the Arduino development environment." Synthesis Lectures on
Digital Circuits and Systems, 2010, 5.1: 1-275.

[2] Espressif Systems. espressif.com [Online]. Available:
https://espressif.com/sites/default/files/documentation/esp32
technical_reference_manual_en.pdf. [Accessed 07 Jan. 2020].

[3] Maier, Alexander, Andrew Sharp, and Yuriy Vagapov. "Comparative
analysis and practical implementation of the ESP32 microcontroller
module for the internet of things." In Internet Technologies and
Applications (ITA), 2017, pp. 143-148. IEEE, 2017.

[4] J. A. F. Calderon, J. S. Vargas and A. Pérez-Ruiz, "License plate
recognition for Colombian private vehicles based on an embedded
system using the ZedBoard," 2016 IEEE Colombian Conference on
Robotics and Automation (CCRA), Bogota, 2016, pp. 1-6.

[5] Anand Nayyar and Vikram Puri, "A review of Arduino board's
Lilypad's & Arduino shields", 3rd IEEE International Conference In
Computing for Sustainable Global Development (INDIACom), pp.
1485-1492, 2016.

[6] Arduino, "ARDUINO UNO REV3." [Online]. Available:
https://store.arduino.cc/usa/arduino-uno-rev3 [Accessed 07 Jan. 2020].

[7] Badamasi YA. The working principle of an Arduino. InElectronics,
computer and computation (icecco), 2014 11th international
conference on 2014 Sep 29 (pp. 1-4). IEEE.

[8] Arduino, "ARDUINO MEGA 2560 REV3." [Online]. Available:
https://store.arduino.cc/usa/arduino-mega-2560-rev3 [Accessed 08
Jan. 2020].

[9] Sarjerao, Borade Samar, and Amara Prakasarao. "A Low Cost Smart
Pollution Measurement System Using REST API and ESP32."
In 2018 3rd International Conference for Convergence in Technology
(I2CT), pp. 1-5. IEEE, 2018.

[10] Birau, Eduard Valentino. Development of a CAN-Wifi converter
based on a ESP32. MS thesis. Universitat Politécnica de Catalunya,
2018.

[11] Jameel, H. and Kareem, H., 2016. Low-Cost Energy-Efficient Smart
Monitoring System Using Open-Source

Microcontrollers. International Review of Automatic Control
(IREACO), 9(6), pp.423-428.

[12] Mellis, D., Banzi, M., Cuartielles, D. and Igoe, T., 2007, April.
Arduino: An open electronic prototyping platform. In Proc. Chi(Vol.
2007).

[13] Kareem, Husam. "Embedded real-time system for detecting leakage
of the gas used in iraqi kitchens." Indonesian Journal of Electrical
Engineering and Computer Science 14.3 (2019): 1171-1176.

[14] https://github.com/olikraus/u8g2 [Accessed 11 May. 2020].

135
Authorized licensed use limited to: Technische Hochschule Mittelhessen. Downloaded on September 07,2024 at 10:12:53 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T23:38:07-0400
	Preflight Ticket Signature

